
48 The Delphi Magazine Issue 72

Beating The System:
Strings Unstrung
by Dave Jewell

Long-term denizens of the
Borland conference on CIX will

know that there’s one subject
which keeps cropping up with
monotonous regularity, and that’s
the thorny issue of Delphi’s sup-
port for long strings. Queries on
how the AnsiString type is imple-
mented internally, under what
circumstances strings are refer-
ence counted, whether or not they
are more efficient than short
strings and so on, and so forth, are
favourites.

As my humble contribution to
world peace, this month’s Beating
The System is intended to cover
the subject one last time for the
benefit of those who pursue this
particular topic with seemingly
relentless enthusiasm. If I can put
this issue to bed once and for all
then I’ll die a happy man.

But First
But first, in this necessarily rather
technical discussion, it is impor-
tant to get our terminology firmly
bolted down. To begin with, when-
ever I say ‘string’ in this article, I
am going to be talking about
Delphi’s default string type,
AnsiString, unless otherwise
stated. If I am talking about the
older ShortString type (the classic
Pascal string, limited to a maxi-
mum of 255 characters in length)
then I will specifically say so.

It’s also important to carefully
distinguish between the string data
and the corresponding string vari-
able. The string data, or the actual
text of a string, is always allocated
on the heap, never on the stack.
If we were talking about short
strings, then this wouldn’t be so,
but it is always true for the
AnsiString type. A string variable,
on the other hand, can be allocated
anywhere you like:

var Str: String;

Much of the time, you would place
a declaration like this inside a
method or procedure. In such
cases, the variable is being allo-
cated on the stack, because local
variables are always stack-based.

Alternatively, you might place
the above declaration outside of
any procedure or method. In other
words, you could place it in a var
block following the interface or
implementationpart of a unit. In this
case, the string variable will be
allocated within the application’s
data segment.

Then again, you will very likely
use declarations like the one above
to create private string variables
within a Delphi class. Because
the storage space which is occu-
pied by an object instance is
always allocated on the heap, this
means that those private string

variables will also be allocated on
the heap.

To summarise: string data is
only ever allocated on the heap. A
string variable itself, however,
might be allocated on the stack, in
the application data segment, or
on the heap: it depends entirely on
where it was declared.

Finally, of course, we need to
distinguish between the size of the
string variable and the size of the
string data! The former is always
four bytes, corresponding to the
32-bit pointer that references the
actual data. Thus sizeof(String)
will always return 4. The length of
the string is, of course, returned by
the Length function. Depending on
the string in question, this can
return anything you like, although
negative numbers should perhaps
be viewed with some element of
suspicion... �

I’m sorry if this all seems to be
labouring the point, but without a
good grasp of the basics of the
Delphi string implementation, the
deeper issues will always remain a
mystery.

Time to move on to more com-
plex matters.

➤ Figure 1: Even an apparently 'do-nothing' routine can generate
a surprising amount of code once you start messing around with
string variables. All of the stuff here is an empty try..finally block
created by the code generator.

August 2001 The Delphi Magazine 49

Hidden String
Initialisation And Finalisation
OK, so we understand the differ-
ence between a string variable and
the string data. The next point to
make is the way in which strings
are automatically initialised by
Delphi. The compiler actually goes
to some trouble to ensure that
strings are properly initialised
before use. As I’ve already men-
tioned, a string variable is actually
a 32-bit pointer to the actual string
data. Borland designed the
runtime library’s string support so
that, by convention, an empty
string is represented by a Nil
pointer. In other words, rather
than having to allocate a pointer to
a zero byte, as one might expect
things to work, a Nil string pointer
is always interpreted as an empty,
zero-length, string.

There are some big advantages
to this approach from a runtime
perspective. As you probably
know, whenever Delphi creates an
instance of an object, all the
instance data within that object is
automatically initialised to zero by
the runtime library. In other words,
given some object called TMyObj-
ect, for which the standard
TObject.InstanceSize function
returns 230 bytes, the runtime
library will pre-fill all 230 bytes of
instance data with zeros. This
means that any string variables
defined inside a Delphi object are
guaranteed to be initialised to
empty strings, without having to
place any explicit string initialis-
ation code inside the object’s con-
structor.

In the same way, any time you
declare a string variable at global
scope within a unit, no special
code is generated by the Delphi
compiler. This is because all global
variables are implicitly initialised
to zero by the Delphi runtime
library. Therefore, globally
declared string variables are
always initialised to an empty
string, unless of course you were to
give them an initial value, like this:

var Str: String = ‘Fred’;

Similar things can be said about
string variables which are

declared inside a
method. For exam-
ple, here is an appar-
ently do-nothing
method:

procedure TForm1.DoNothing;
var
Str: String;

begin
end;

Looks like this doesn’t generate
any code, right? Surprisingly,
DoNothing generates a fair amount
of code, as you can see from the
disassembly in Figure 1. Inci-
dentally, I generated these
disassemblies using a program
called DCUExplorer, a relative new-
comer to the DCU-disassembling
scene. You can download
DCUExplorer from www.puthoon.
com/home.html. It’s free, but sadly
you don’t get the source code.
There’s no such thing as a free
lunch, I guess.

I’m working on the assumption
that you’re not that familiar with
the Delphi code generator. If you
were, you’d see that Figure 1 corre-
sponds to an empty try..finally
block. In a nutshell, whenever you
declare a string inside a procedure
or method, a try..finally block is
secretly inserted by the code gen-
erator. Ordinarily, the purpose of
this would be to ensure that the
string is de-allocated on exit from
the declaring method, regardless
of whether or not that method

exits abnormally. However, in this
particular case, the string is never
used and, if you try compiling the
above code, the compiler will
rightly complain that you’ve
declared a variable but not used it.
The compiler is smart enough to
spot this fact, but by the time it
does (once it’s parsed to the end of
the function), the code generator
has already been instructed to gen-
erate the try..finally block. The
end result is that we get a spurious
try..finally where we didn’t
really need one.

In a more typical case, you
would of course make use of the
string variable, or at least assign to
it. Let’s say that you add the
following assignment between the
begin and end statements of the
DoNothing method:

Str := ‘Fred’;

The generated code will now look
as shown in Figure 2. There are
some subtle (in some cases, very
subtle!) differences between this
code and Figure 1. The most subtle
change is that PUSH statement
which you can see has appeared
on line 61. This pushes a zero onto
the stack. What’s the explanation
for this?

➤ Figure 2:
The Delphi code
generator uses
a very elegant
but subtle way
of allocating
space for and
initialising
string variables,
all with a single
machine code
instruction.
See the PUSH
instruction in
line 61? There
is more there
than meets
the eye...

50 The Delphi Magazine Issue 72

Because we have made an
assignment to the string, the
compiler decides that the string
variable really is being used, so
it emits the necessary code to
initialise the string. But remember I
told you that all that’s needed to
initialise a string variable is to set
it to Nil. The code generator
tends to initialise the frame pointer
(EBP) for a method and then
to initialise any needed string
variables. In this case, by simply
assigning to EBP and then pushing a
zero on the stack, it can then
reference the new string variable
as [EBP-4]. In essence, the PUSH
statement allocates space for the
string variable and initialises it to
zero at the same time, all with a
single machine-code instruction.
Sneaky, or what?

If you write a method that
declares a large number of string
variables, you shouldn’t be sur-
prised to find code that starts off
something like this:

PUSH EBP
MOV EBP,ESP
XOR ECX,ECX
PUSH ECX
PUSH ECX
PUSH ECX
PUSH ECX
PUSH ECX
PUSH ECX
PUSH ECX

This particular routine declares no
less than seven strings and, sure
enough, we see seven zeros
pushed onto the stack, each of
which allocates space for and
initialises a string variable. In this
case, the sneaky code generator
has realised that pushing seven
immediate values would need-
lessly waste space, so it stores zero
in a single register (ECX in this case)
and then uses this register as the
source for the PUSH instructions.
With even more strings declared,
the code generator uses another
space-saving tactic: implementing
a hidden loop using ECX as the loop
variable to push the required
number of zeros.

The remainder of Figure 2 is
relatively easy to explain. The code
at lines 67 to 69 assigns the literal

string Fred to our local variable,
while the code at lines 76 and 77
corresponds to the finally clause
of the try..finally block and is
responsible for de-allocating the
string.

This brings me neatly onto the
subject of finalisation or, as our
American cousins would say, final-
ization. (As I recently moved to
North Wales, just think yourselves
lucky I’m not using the Welsh
translation.) Strings are a special
type of Delphi variable because
they need to be finalised. Inter-
faces are another example of
finalisable variables, about which
more later. Whenever you use a
finalisable variable in your code,
Delphi transparently takes care of
finalising the variable when it goes
out of scope.

In essence, the pseudo-code for
our do-nothing routine looks
something like Listing 1.

Notice that in pseudo-code,
string initialisation looks identical
to string finalisation: a simple
assignment to an empty string. But
at the grass roots level, things are
somewhat different. As we have
already seen, initialising a string is
just a question of storing zero into
the string variable. Finalising, how-
ever, requires that the address of
the string variable is passed to an
internal routine called @LStrClr.
You can clearly see this in Figure 2.
When de-allocating a string, we
can’t just set the string variable to
zero because this would ‘cast
adrift’ any dynamically allocated
string data already on the heap.
Instead, @LStrClr automatically
takes care of de-allocating the
string data as well as setting the
string variable to zero.

Well, OK, that covers string
finalisation in a procedure or
method, but what about string
finalisation at global scope: how
does the Delphi runtime system

guarantee finalisation of strings
declared at global scope in a unit?
By definition, such strings never
go out of scope during the execu-
tion of a program, but the code
generator auto-magically inserts
code into the finalization clause
of any unit which has global
strings. Even if you don’t declare a
finalization block yourself, a
hidden finalization block will
take care of any needed string
cleanup, calling @LStrClr on any
global strings. Again, this is very
sneaky stuff.

But what about strings that are
declared within a Delphi object?
How do they get cleaned up?
Earlier, I said that because class
members are automatically initial-
ised to zero, no special initialis-
ation is needed for strings in a
Delphi object. Although this is
strictly true, it’s only giving you
part of the story. What actually
happens is that when the Delphi
compiler parses a class declara-
tion, it makes a special note of any
finalisable items (remember: these
are strings and interfaces) that are
declared within the class. Using
this information, the compiler
builds a special table called the
init-table, which lists all the
finalisable items within the class.
For each finalisable item, an init-
table entry contains a pointer to
the item’s type information
together with a byte offset into the
instance data for the enclosing
class.

So, to take a simple example: if
you create a Delphi class contain-
ing three strings, Tom, Dick and
Harry, these strings might be
located at offsets $20, $24 and $28
within the instance data for that
class. The init-table will contain
three entries, with the type
information for all three entries

procedure TForm1.DoNothing;
var
Str: String;

begin
Str := ''; � initialise the string (sets string variable to zero)
Str := 'Fred';
try
finally
Str := ''; � finalise the string (calls @LStrClr)

end;
end;

➤ Listing 1

August 2001 The Delphi Magazine 51

pointing to the String type, and
the byte offsets being set at $20, $24
and $28. Somewhat inappropri-
ately named, the init-table really
comes into play when a Delphi
object is destroyed, not initialised.
At that time, the runtime code
works its way through the init-
table, finalising any items found
there. For strings, of course, this
means that our old friend @LStrClr
will be called.

Having said all that, I should
mention plain-vanilla records for
the sake of completeness. When
you declare a record, the compiler
will once again check the fields of
the record for finalisable types. If
any are present then, as for
classes, it builds an init-table.
Whenever you use Newor Dispose to
create and destroy records that
are allocated on the heap, the
compiler passes a pointer to the
record’s RTTI (runtime type infor-
mation) to the New or Dispose rou-
tine. This allows the runtime
library to correctly initialise and
finalise strings contained within a
record declaration.

Surprise, Surprise
At this point, you should have a
pretty solid understanding of the
way that Delphi implements the
AnsiString type, but this is not the
whole story by any means. Listing
2 is a surprising little example that
shows things aren’t always what
they seem. Note that thanks are
due to Matthew Jones of CIX for
posting up this sample code.

What would you expect to be
displayed by the ShowMessage call?
Matthew reckoned that the result
should be Hello, but what you’ll
actually get is HelloHello.

What exactly is happening here?
First and foremost, MyFunc is an
example of bad code, because it
uses the Result variable on
the right-hand side of an assign-
ment statement before Result
has been given an initial value, or
so it would seem. Based on what
we’ve learned so far, you
might think that this is not a
problem. After all, Result is
a String, so we know that it will be
initialised to an empty string,
right? Wrong.

If Result was indeed initialised
to zero on entry to the function,
then MyFunc would always return
Hello in line with most people’s
expectations. In practice, this isn’t
what happens. Why not? The real
issue here is one of ownership. Is
the Result variable owned by the
calling routine, MyProc, or is it
owned by the called routine,
MyFunc? Again, common sense
would suggest that a function’s
result belongs to the function, but
this isn’t the case. Here’s another
way of looking at it: we’ve seen
how a string is initialised, used,
and eventually finalized, or dis-
posed of. The corollary to this is

function MyFunc: String;
begin
Result := Result + 'Hello';

end;
procedure MyProc;
var
szText: String;

begin
szText := MyFunc;
szText := MyFunc;
ShowMessage(szText);

end;

➤ Listing 2

52 The Delphi Magazine Issue 72

that a locally allocated string vari-
able (that is, a local string declared
within a routine) will always be
finalised in the same routine that
created it.

This is a very important point.
And now the penny should be
starting to drop. If the string Result
of a function were initialised within
the function, then who gets to
finalise the string? It has to be done
in the function, because the func-
tion created it. But it can’t be done
in the function, because the func-
tion result is required once the
function itself has gone out of
scope. Dilemma!

The solution that Borland
devised was to treat string function
results as var parameters from an
implementation perspective. In
other words, it looks like a function
result at the source code level, but
it’s implemented as a var parame-
ter ‘under the hood’. Thus, the
equivalent pseudo-code for Listing
2 is really doing what is shown in
Listing 3.

You can now see exactly why the
final result of these deliberations is
HelloHello. The szText variable
starts off as an empty string, and
then has Hello concatenated onto
it each time MyFunc is called. By
inadvertently accessing the Result
variable on the right-hand side of
an assignment, we’ve exposed
details of the underlying imple-
mentation that were best left
covered up!

In Passing
Things become even more inter-
esting when we start passing
strings from one routine to
another. As I’m sure you’ll have
realised from previous articles,
passing a string by value (that
is, without the const or var prefix)

is rarely a good idea. Back in the
old days of ‘classic’ Pascal-style
short strings, passing a string by
value forced the compiler to imme-
diately create a new, local, copy of
the string, which was allocated
within the stack frame of the called
procedure, and this is still the
default behaviour whenever you
use ShortString parameters.
Because a ShortString always
occupies a fixed 256 bytes of
memory, this means that you have
immediately consumed 256 bytes
of stack space. This behaviour
occurs whether or not the passed
string is actually modified within
the routine.

When Borland came up with
the AnsiString implementation, it
obviously had to change this
strategy. An AnsiString can poten-
tially be very big, in fact, enor-
mous, and it would hardly be
a sensible implementation to
gratuitously copy megabytes of
string data every time some novice
developer forgets to put var or
const in front of his string
argument. Clearly, a different
approach was required.

What Borland came up with was
the elegant idea of reference-
counting. When you pass a non-
var, non-const string to a routine,
the compiler automatically gener-
ates (yes, congratulations, you’ve
guessed it!) another hidden
try..finally block within the
called routine. This routine incre-
ments the reference count of the
passed string on entry to the
procedure and then decrements
it on exit. In fact, the routine used
on exit is @LStrClr.

Previously, I have touted this
routine as simply de-allocating a
string, but it really does more than
that. It decrements the string’s
reference count, only de-allocating
the string if the reference count
falls to zero.

So let’s quickly review the over-
all scenario. You create a routine
declaring some string variable, and
use it within the routine. When first
used (remember that the string
variable is just a Nil pointer
initially) the string gets assigned
a reference count of one. Within
the finally clause of the

hidden try..finally block, the
@LStrClr routine decrements the
reference count and, if it falls to
zero, disposes of the string. When
you pass a string (reference count
of 1) to another string without
using the const or var prefixes, the
reference count of the string gets
bumped up to 2 within the called
routine. This means that the corre-
sponding @LStrClr routine simply
decrements the reference count
back to 1 and exits without destroy-
ing the string, which belongs to the
calling routine.

The final part of the picture is
another library routine called
UniqueString. This routine is called
automatically whenever you
change characters in a string, take
a pointer to characters within
the string, or do anything that
implies a write operation.
Internally, UniqueString examines
the reference count of the string
and, if it is greater than one,
creates a new, unique copy of the
string with a reference count of
one, but leaves the old string
untouched. This makes it possible
to pass an AnsiString by value,
mess around with it in the called
routine, and expect the original
string to remain the same. Tech-
nically, this is called a copy-
on-write strategy.

var
bmp: TBitmap;
jpeg: TJPEGImage;

begin
bmp := TBitmap.Create;
jpeg := TJPEGImage.Create;
try
bmp.LoadFromFile('C:test.bmp');
jpeg.Assign(bmp);
jpeg.SaveToFile('C:test.jpg');

finally
bmp.free;
jpeg.free;

end;

var
bmp: TBitmap;
jpeg: TJPEGImage;
is1, is2 : ISafeGuard;

begin
bmp := TBitmap(
Guard(TBitmap.Create,is1));

jpeg := TJPEGImage(
Guard(TJPEGImage.Create,is2));

bmp.LoadFromFile('C:test.bmp');
jpeg.Assign(bmp);
jpeg.SaveToFile('C:test.jpg');

end;

➤ Listing 4

➤ Listing 5

procedure MyFunc(
var Result: String);

begin
Result := Result + 'Hello';

end;
procedure MyProc;
var
szText: String;

begin
MyFunc (szText);
MyFunc (szText);
ShowMessage (szText);

end;

➤ Listing 3

August 2001 The Delphi Magazine 53

And Finally
A lot of what I’ve said here about
strings is also true of interfaces. As
with strings, an interface is a
finalisable object and, as with
strings, the code generator goes to
some lengths to ensure that inter-
faces are correctly disposed of at
the end of the scope block where
they’re declared, using hidden
try..finally statements to work
its magic.

And that would be the end of the
story if it weren’t for Will Watts and
the JEDI Code Library. Will
recently brought to the attention of
assembled ‘cixen’ an interesting
new feature of this library called
SafeGuards. Using SafeGuards, it’s
possible to bind an interface to
some arbitrary variable which
needs to be de-allocated at the end
of the current block, such as a
bitmap, memory handle, form or
whatever. Because the Delphi
runtime library automatically
takes care of destroying an inter-
face object at the end of the declar-
ing scope, these other objects
effectively ‘piggy back’ onto the
interface object and are automati-
cally destroyed by the JEDI library
code when the interface object is

destroyed. To make this a little
clearer, Listing 4 is a simple exam-
ple taken from an article on the
Borland community website at

http://community.borland.com/
article/0,1410,27465,00.html

Here, an image is loaded from a
bitmap file and copied out to a .JPG
file. In the usual way, the bmp and
jpeg objects are protected by a
try..finally block such that they
are automatically destroyed even
if an exception occurs. Listing 5 is
the same code using SafeGuards.

This time, it’s necessary to
declare two ISafeGuard variables,
one to ‘guard’ each of our two
resource variables. The Guard
routine sets up the association

between the interfaces and the
bmp and jpeg variables. As you
can see, it’s no longer necessary
to explicitly destroy these vari-
ables because it happens implic-
itly when is1 and is2 are
themselves destroyed. The
advantage of this technique is
that you don’t need to mess
around with try..finally
blocks, which, although not a
major benefit in this trivial exam-
ple, can make a big difference to
code readability in a more com-
plex example.

I’m neither advocating this
technique nor advising against
it, but it seems to be an interest-
ing idea worth further investiga-
tion. My philosophy is, and
always has been, that the less

code one has to write, the less
opportunity there is to create
bugs, and that’s why I prefer devel-
oping with Delphi!

As you’ll see from my final
screenshot, I now have Delphi
running under Release Candidate 1
of Windows XP! Next month, we’ll
be developing some Delphi code
which makes use of XP’s new
Theme Manager API.

Dave Jewell is a freelance consul-
tant, programmer and technical
journalist specialising in system-
level Windows programming and
cross-platform issues. He is the
Technical Editor of The Delphi
Magazine. You can contact Dave
at TechEditor@itecuk.com

➤ Figure 3: It's Delphi, Jim, but
not as we know it. Next month
we'll be getting stuck into
some Delphi code that exploits
the new visual themes support
in Windows XP.

	But First
	Hidden String Initialisation And Finalisation
	Surprise, Surprise
	In Passing
	And Finally

